首页> 外文OA文献 >Symmetric Gauss-Seidel Technique Based Alternating Direction Methods of Multipliers for Transform Invariant Low-Rank Textures Problem
【2h】

Symmetric Gauss-Seidel Technique Based Alternating Direction Methods of Multipliers for Transform Invariant Low-Rank Textures Problem

机译:基于对称Gauss-seidel技术的交替方向法   变换不变低秩纹理问题的乘子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Transform Invariant Low-Rank Textures, referred to as TILT, can accuratelyand robustly extract textural or geometric information in a 3D fromuser-specified windows in 2D in spite of significant corruptions and warping.It was discovered that the task can be characterized, both theoretically andnumerically, by solving a sequence of matrix nuclear-norm and $\ell_1$-norminvolved convex minimization problems. For solving this problem, the directextension of Alternating Direction Method of Multipliers (ADMM) in an usualGauss-Seidel manner often performs numerically well in practice but there is notheoretical guarantee on its convergence. In this paper, we resolve thisdilemma by using the novel symmetric Gauss-Seidel (sGS) based ADMM developed byLi, Sun \& Toh (Math. Prog. 2016). The sGS-ADMM is guaranteed to converge andwe shall demonstrate in this paper that it is also practically efficient thanthe directly extended ADMM. When the sGS technique is applied to thisparticular problem, we show that only one variable needs to be re-updated, andthis updating hardly imposes any excessive computational cost. The sGSdecomposition theorem of Li, Sun \& Toh (arXiv: 1703.06629) establishes theequivalent between sGS-ADMM and the classical ADMM with an additionalsemi-proximal term, so the convergence result is followed directly. Extensiveexperiments illustrate that the sGS-ADMM and its generalized variant havesuperior numerical efficiency over the directly extended ADMM.
机译:变换不变的低阶纹理(TILT)可以从用户指定的2D窗口中准确而稳健地提取3D中的纹理或几何信息,尽管存在明显的损坏和变形,但该任务可以在理论上和数值上进行表征,通过求解矩阵核范数和$ \ ell_1 $ -norvolved凸最小化问题的序列。为了解决这个问题,在实践中,通常以高斯-塞德尔(Gauss-Seidel)方式乘以交替方向乘数法(ADMM)的直接扩展在数值上通常表现良好,但是对其收敛性没有理论上的保证。在本文中,我们通过使用由Li,Sun \&Toh(Math。Prog。2016)开发的新型基于对称高斯-赛德尔(sGS)的ADMM解决了这一难题。保证sGS-ADMM收敛,并且在本文中我们将证明它比直接扩展的ADMM在效率上还高。当将sGS技术应用于此特定问题时,我们表明仅需要重新更新一个变量,并且此更新几乎不会增加任何计算量。 Li,Sun \&Toh(arXiv:1703.06629)的sGS分解定理在sGS-ADMM和经典ADMM之间建立了等价的附加半近似项,因此可以直接跟踪收敛结果。大量实验表明,与直接扩展的ADMM相比,sGS-ADMM及其广义变体的数值效率更高。

著录项

  • 作者

    Ding, Yanyun; Xiao, Yunhai;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号